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Abstract—Spectrum auctions provide a platform for licensed
spectrum users to share their underutilized spectrum with unli-
censed users. Existing spectrum auctions either use the protocol
interference model to characterize interference relationship as
binary relationship, or do not allow the primary and secondary
users to share channels simultaneously. To fill this void, we
design SPA, a spectrum single-sided auction under the physical
interference model, which considers the interference to be accu-
mulative. We prove that SPA is truthful, individually rational,
and computationally efficient. Results from extensive simulation
studies demonstrate that, SPA achieves higher spectrum utiliza-
tion and buyer satisfaction ratio, compared with an existing
auction adapted for the physical interference model.

I. INTRODUCTION

Spectrum is a critical yet scarce resource due to the
substantial growth of wireless technology and applications.
Indeed, Federal Communications Commission (FCC) and its
counterparts across the world have released licenses of unused
spectrum and collected billions of dollars in the past decade.

Fundamentally different from conventional goods, spectrum
is reusable, which is referred to as spatial reusability. Users
can share the same channel as long as they can transmit signals
simultaneously without disrupting each other’s transmission.
Therefore, the primary license holders may be motivated to
open up their underutilized spectrum for sharing, so that they
may make profit by leasing access to spectrum resources. In
addition, allowing spectrum to be shared by multiple users can
also improve the spectrum utilization efficiency.

When the spatial reusability of the spectrum is consid-
ered, one arising challenge is to characterize interference
relationship among users in cognitive radio networks (CRNs).
Most of the existing spectrum auctions adopt the protocol
interference model [6], which simplifies the step of allocation
by scheduling users according to conflict graphs. The function-
ality of the mechanisms is the assumption that the interference
relationship between any two users can be modeled based on
the protocol. In other words, the interference relationship is
binary. But in practice for wireless networks, a conflict graph
may not be precise, as the interference from other users is
accumulative.

To solve this problem, we intend to design spectrum auc-
tions without using the given conflict graph, but under the
physical interference model [6] instead. Next we shall explain
the protocol and physical models in details.
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A. Interference Models

1) Protocol Interference Model [6]: When two users trans-
mit using the same channel simultaneously, they interfere with
each other if the distance between them is within interference
range. Usually, a conflict graph is used to characterize the in-
terference relationship under the protocol interference model,
where each node represents a user, and an edge exists if two
nodes interfere with each other. For example, Figure 1 shows
a wireless network under the protocol interference model and
the corresponding conflict graph. For clarity, we only show
the interference ranges of Link (T2, R2) and Link (T4, R4)
in Figure 1(a). Unfortunately, this simplified model abstracts
away the accumulative nature of interference. Even if a single
transmitter far away from a receiver may not corrupt the
transmission, the accumulated interference from several such
nodes could still generate enough interference to prevent the
receiver from successfully decoding the received message.
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Figure 1. Protocol interference model

2) Physical Interference Model [6]: The physical interfer-
ence model (a.k.a. SINR model) computes the Signal to In-
terference and Noise Ratio (SINR) of each user and compares
this value with a threshold. If the SINR value is no less than
the threshold, the signal transmission is considered successful
for the corresponding user, and it is considered unsuccessful
otherwise. Figure 2 shows the same wireless network as in
Figure 1, under the SINR model, where the interference is
characterized as accumulated. For example, Link (T1, R1)
receives interference from all other links. Compared with the
protocol interference model, the physical interference model
has been recognized as a more realistic model in wireless
communications.

Figure 2. Physical interference model



2

The main contributions of this paper are:
• In this paper, to the best of our knowledge, we are the first

to design a single-sided SPectrum Auction, named SPA,
with spatial reusability under the physical interference
model. SPA consists of an allocation algorithm and a
pricing mechanism.

• SPA allows the primary user and secondary users to share
channels simultaneously, as long as the signal quality of
the primary user is guaranteed.

• We rigorously prove that SPA is truthful, individually
rational, and computationally efficient.

The remainder of the paper is organized as follows. In
Section II, we give a brief review of related work in the
literature. In Section III, we formally describe the CRN model
as well as the auction model. We present our designed auction,
SPA and analyze the properties of SPA in Section IV. We
evaluate the performance of SPA by comparing it with an
existing auction in Section V and conclude this paper in
Section VI.

II. RELATED WORK

As pioneers in spectrum auction design, Zhou et al. [21]
proposed VERITAS under the protocol model, the first truthful
auction considering the spectrum reusability and computation
efficiency. In [8], based on the concept of virtual valuation,
Jia et al. designed an exponential time VCG-based auction to
maximize the expected revenue. Along this line, Al-Ayyoub
and Gupta [1] designed a polynomial time spectrum auc-
tion that yields approximated expected revenue. In [15], Wu
and Vaidya designed SMALL to guarantee that the owner’s
utility is non-negative in the scenario where the owner of
the spectrum has a reserved price for each of the channels.
Following the same design methodology, Wei et al. [14]
designed SHIELD that improves spectrum utilization and
buyer satisfaction compared with VERITAS and SMALL.
Inspired by the group-buying service on the Internet, Lin
et al. [10] designed a three-state auction, called TASG that
allows a leader in each group to conduct an outer auction for
aggregating the bids within the group. Along this line, Yang
et al. [18] designed TRUBA that significantly increases the
revenue. In [5], Gopinathan and Li studied spectrum auctions
with prior-free setting and designed a truthful auction to
approximately maximize the revenue.

TRUST [22] is the first truthful double auction designed for
spectrum trading. Feng et al. [4] extended to heterogeneous
spectrum auctions and designed TAHES. In [12], a double
truthful auction, called DOTA, was proposed to allow each
user to bid for more than one channel. Considering the fact
that secondary users may join the network in an online fashion,
Wang et al. [13] designed TODA. In [19], Yang et al. proposed
PROMISE for maximizing the profit without the knowledge
of the users valuation distribution.

In the scenario of the physical interference model, Kakhbod
et al. in [9] developed a truthful auction for dividing a spec-
trum channel into several small channels with less bandwidth,
where all transmitters power levels are fixed homogeneously.

In [2], a truthful single auction was studied by Bae et al.,
where a sequential auction (an auction with multiple rounds)
was used to reach a pure strategy equilibrium. Huang et
al. also introduced a truthful auction-based spectrum sharing
mechanism [7] where a group of users compete for a spectrum
channel under different definitions of their utilities. Zhang
et al. proposed TSA [20], a framework for truthful double
auctions under the physical interference model with power
control. To the best of our knowledge, there is no truthful
single-sided auction for spectrum sharing under the physical
interference model.

III. SYSTEM MODEL

In this section, we describe the necessary concepts in
cognitive radio networks and the physical interference model
for the spectrum auction.

A. Cognitive Radio Network Model

We consider a cognitive radio network (CRN) consisting of
one primary user (PU) and a set S = {S1, S2, . . . , Sn} of n
secondary users (SUs). The PU, e.g., the TV broadcaster, owns
m licensed channels C = {c1, c2, . . . , cm}, and is willing to
rent the spectrum for profit. The channels are assumed to be
orthogonal, which means that there is no interference among
users using different channels. Let P0 denote the transmission
power of the PU’s transmitter, e.g., the TV tower, denoted
by T0. SUs do not have licensed spectrum channels, but are
willing to pay for channels from the PU in the short term.
Each Si ∈ S is a transmitter-receiver pair (Ti, Ri). Let Pi
denote the transmission power of Ti.

We allow the PU and SUs to transmit signals over the same
channels simultaneously. Let C0 ⊆ C represent the channels
that the PU is currently using. To protect the transmission of
the PU from being interrupted by the transmissions of SUs,
the FCC proposed a metric, named Interference Temperature
Limit (ITL) [3], which sets the maximum cumulative amount
of interference that can be tolerated at the certain locations.
Let L = {l1, l2, . . . , lh} denote the locations where the PU
measures ITL. We use γj to represent PU’s tolerated ITL at
location lj . With this setting, the PU can lease its channels
to SUs as long as the transmissions of the selected SUs do
not cause more interference than γj , for any lj ∈ L. Assume
Gk is the group of SUs assigned to the same channel ck.
Throughout the rest of this paper, we use channel and group
interchangeably. The ITL constraints can be represented by

1C0(ck)
∑
Si∈Gk

Pi
d(Ti, lj)α

≤ γj ,∀lj ∈ L, (1)

where 1C0(ck) is an indicator function defined as

1C0(ck) =

{
1, ck ∈ C0,
0, ck 6∈ C0,

(2)

d(Ti, lj) is the maximum of 1 and the Euclidean distance from
transmitter Ti to location lj , and α is the path loss exponent
with value between 2 and 4 usually.
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We can achieve spatial reuse by assigning multiple SUs to
the same channel, if they can transmit simultaneously while
each obtains a satisfactory SINR value.

The Signal to Interference and Noise Ratio (SINR) [6] of
Si in Gk is:

Pi
d(Ti,Ri)α

1C0(ck)
P0

d(T0,Ri)α
+
∑
Si 6=Sj∈Gk

Pj
d(Tj ,Ri)α

+N0

≥ βi, (3)

where N0 is the ambient noise power level, and 1C0(ck) is
defined in Equation (2).

If Condition (3) is satisfied, the transmission is considered
successful; otherwise, the transmission is considered unsuc-
cessful. We assume that Condition (3) is satisfied for each
Si when it solely occupies a channel. We can preprocess this
before our proposed mechanism, that if by transmitting at a
power of Pi, Condition (3) is not satisfied, when Si solely
occupies a channel, we discard Si out of the market since no
channel could satisfy a successful transmission for Si.

Before we formally describe our algorithm, we need the
following definitions: SU Tolerance [16, 17] and Feasible
Group.

Definition 1 (SU Tolerance). The tolerance τi indicates how
much interference Si can endure before the corresponding
SINR value falls below the threshold βi. It can be calculated
by

τi =

Pi
d(Ti,Ri)α

βi
−N0. (4)

Definition 2 (Feasible Group). A group Gk of SUs is feasible
with respect to Si if, after the addition of Si to the group,
Condition (3) is satisfied ∀Sj ∈ Gk ∪ {Si} and Condition (1)
is satisfied for the PU.

B. Auction Model

With the primary and secondary users in the cognitive radio
network, we aim to design a single-sided spectrum auction that
is individually rational, computationally efficient, and truthful.
In this setting, the PU is the seller and SUs are buyers.
Throughout the rest of the paper, we use the terminology
of PU and seller, SU and buyer interchangeably. The PU
contributes m homogeneous channels {c1, c2, ..., cm} and is
using channels ck ∈ C0. Each buyer Si requests di channels
and holds a private valuation vi ≥ 0 for leasing di channels, as
well as a bid bi ≥ 0 as the maximum amount that it would pay
for di channels. In this paper, we focus on the single-minded
scenario: a buyer accepts either di channels or 0 channel.
Another possible case is range-based: a buyer accepts any xi
channels if 0 ≤ xi ≤ di. The auction design for the range-
based case will be our future work.

The auction works as follows: after collecting the bids and
requests from all buyers, the algorithm decides the allocation
for each buyer. The algorithm also computes the payment for
each winning buyer. Buyer Si pays pi as the corresponding
payment.

The utility of Si is defined as follows:

ui =

{
vi − pi, if Siwins,

0, otherwise.
(5)

C. Desired Properties
There are three desired properties for an auction to satisfy:
• Truthfulness: an auction is truthful if a buyer bids the true

valuation of the resource, its utility will not be less than
that when it lies.

• Individual Rationality: an auction is individually rational
if all buyers have non-negative utilities by revealing their
true valuations.

• Computational Efficiency: an auction is computationally
efficient if it can be conducted within polynomial time.

IV. AUCTION DESIGN OF SPA
In this section, we introduce the basic design of SPA, where

buyers are assumed to be single-minded, i.e., a buyer Si that
requests di channels only accepts either all di channels or
nothing.

A. High-level Description
SPA consists of two stages: allocation and pricing. The

allocation stage applies a mechanism, which sorts buyers based
on both bids and tolerances. Then we check the feasibility of
each buyer to m channels sequentially, and assign the buyer
to the first di feasible channels as a winner. In the pricing
stage, we determine the final payment for each winner. The
pricing stage applies a mechanism that aims to find critical
values. We present the detailed algorithms in the following
two subsections.

B. Channel Allocation
We start with an intuitive idea. When we choose a buyer

from the set S to allocate a channel, the one with a higher per-
channel bid and more tolerance is preferred. In other words,
this buyer is willing to pay more for each channel and is more
resistant to interference. This property is best characterized by
the product:

b̃i =
bi
di
· τi. (6)

Without loss of generality, we can sort all SUs based on
b̃i in a non-increasing order b̃1 ≥ b̃2 ≥, . . . ,≥ b̃n and get a
sorted list S : S1,S2,S3, . . . ,Sn.

Based on the sorted list S, Algorithm 1 allocates buyers
sequentially from S1 to Sn. For each buyer Si, the algorithm
checks whether Gk is feasible to Si for k = 1 to m. We use a
binary variable fik to mark the feasibility status for Si, defined
as:

fik =

{
1, if Gk is feasible to Si,
0, otherwise.

(7)

The algorithm assigns Si to the first di feasible channels as the
buyer requests. We use another binary variable aik to mark the
allocation status for Si. If Gk is allocated to Si, then aik = 1;
otherwise 0. If there are less than di feasible channels to Si,
the algorithm assigns Si nothing.
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Algorithm 1: Allocation (S)

1 for k ← 1 to m do Gk ← ∅;
2 for i← 1 to n do
3 for k ← 1 to m do Initialize fik using (7);
4 if

∑m
k=1 fik ≥ di then

5 for k ← 1 to m do
6 if fik = 1 and

∑m
k=1 aik < di then

7 aik ← 1; Gk ← Gk ∪ {Si};
8 end
9 end

10 end
11 end
12 G ← {G1, G2, . . . , Gm};
13 return G

C. Pricing

In this stage, we compute payments for winners.
With each buyer either assigned di channels or nothing, next

we need to compute their payments. To maintain truthfulness,
we find each winning buyer its critical value [11].

Definition 3 (Critical Value). The critical value is the the
smallest value such that a buyer will win when bidding higher
than this value, and it will lose when bidding lower than that.

Algorithm 2: Pricing(S,G)

1 for i← 1 to n do pi ← 0;
2 W ←

⋃
Gk∈G Gk;

3 for Si ∈ W do
4 S[−i] ← S \ {Si};
5 for k ← 1 to m do
6 Gk ← ∅; Initialize fik using (7);
7 end
8 for q ← 1 to n− 1 do
9 for k ← 1 to m do Initialize fqk using (7);

10 if
∑m
k=1 fqk ≥ dq then

11 for k ← 1 to m do
12 if fqk = 1 and

∑m
k=1 aqk < dq then

13 aqk ← 1; Gk ← Gk ∪ {S[−i]q };
14 if Gk is infeasible to Si then
15 fik ← 0;
16 if

∑m
k=1 fik < di then

17 pi ← di
b̃q
τi

; break;
18 end
19 end
20 end
21 end
22 end
23 if pi > 0 then break;
24 end
25 end
26 return {p1, p2, . . . , pn}

Algorithm 2 illustrates the payment computation for all
winners. The basic idea is that for each winner Si, first take Si
out of the sorted list S and get a sorted list S[−i] consisting of
the remaining buyers. Then allocate channels to the remaining
buyers. Each time when assigning a channel to a remaining
buyer, check the feasibility of Si. When we find the first buyer
S[−i]q , who makes Si’s request unsatisfied, its corresponding
di
b̃q
τi

is Si’s critical value. Line 17 indicates the payment pi
for Si. If we cannot find the critical value for Si, then the
payment is 0.

We shall run Algorithm 2 to compute the payments for all
the buyers.

D. Analysis
We prove that SPA satisfies the desired properties introduced

in Section I.

Theorem 1. SPA is truthful, individually rational, and com-
putationally efficient.

We prove Theorem 1 by the following three lemmas.

Lemma 1. SPA is truthful.

Proof: It is known that an auction is truthful if the
allocation algorithm of this auction is monotone while the
price charged of a winner is its critical value [11].

Monotonic allocation: In the following, we prove that, for
each buyer Si, if Si wins by bidding bi, then it also wins by
bidding b′i > bi.

Suppose Si wins by bidding bi. Let S and S′ be the sorted
lists when Si bids bi and b′i, respectively. With b′i > bi, we
have b′i

di
> bi

di
and b̃′i > b̃i. Therefore Si’s position in S is after

that in S′ with the same τi and di. Because Si wins by bidding
bi, there are at least di feasible channels for Si when Si is
considered according to S. It implies that there are also at least
di feasible channels for Si when Si is considered according
to S′. Thus Si wins by bidding b′i as well. This proves that
the allocation is monotonic.

Critical Value: In the following, we prove that, for each
buyer Si, its payment pi is its critical value, i.e., Si wins by
bidding higher than pi and loses by bidding lower than pi.

We consider the following two cases separately:
• Case 1: bi > pi

With pi = di
b̃q
τi

, we have b̃i > b̃q and Si would be ranked
before Sq in the sorted list. Because Sq is the first buyer
who makes Si have less than di feasible channels, being
ranked before Sq guarantees that Si has at last di feasible
channels. Therefore, Si wins.

• Case 2: bi < pi
Similarly as the Case 1 above. Si would be ranked after
Sq in the sorted list. According to Algorithm 2, there
would be less than di feasible channels for Si after the
allocation for Sq . Therefore, Si loses.

Thus, pi is the critical value of Si.
We have proved that the allocation algorithm of SPA is

monotone, and the payment of each winner is its critical value.
Therefore, SPA is truthful.
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Lemma 2. SPA is individually rational.

Proof: Assume that each buyer Si bids truthfully, i.e.,
bi = vi. For each winning buyer Si, Algorithm 2 returns pi =
di
b̃q
τi

. According to Equation (5), ui = vi − pi. Because Si
is ranked before Sq , we have b̃i ≥ b̃q . With b̃i =

bi
di
· τi and

b̃q = pi
di
· τi, we obtain bi ≥ pi. Therefore ui ≥ 0. For all

losers, ui = 0.
Thus, ui ≥ 0. SPA is individually rational.

Lemma 3. SPA is computationally efficient.

Proof: We now analyze the running time of SPA. First,
Algorithm 1 takes O(n log n) time to sort the buyers, where
n is the number of buyers. To allocate di channels to a buyer
Si, Algorithm 1 needs to examine at most m channels to
find the feasible channels. This process takes O(mn) time for
n buyers. Therefore, the overall complexity of Algorithm 1
is O(n log n + mn). Second, Algorithm 2 uses the sorted
bids from Algorithm 1 and hence its complexity only comes
from the processes of initialization and checking feasibility
for Sq , which is O(mn) for each buyer. Therefore, the overall
complexity of Algorithm 2 is O(mn2). In total, the overall
complexity is O(mn2).

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of SPA by
comparing it with an existing auction.

A. Environment Setup

As we surveyed in Section II, there is no existing auction
under the physical interference model. Most of the known
prior works [10, 14, 15, 18] form groups to achieve spatial
reusability, according to the given conflict graphs. Thus they
can be easily modified to adopt the physical interference model
by using the SINR values to form groups, as Zhang et.al.
did in TSA [20]. In this setting, we choose to compare SPA
with SMALL [15], which is most related to our auction. Since
the stage of group formation in SMALL is bid-independent,
we implemented an effective heuristic algorithm for link
scheduling in [16] to form secondary users into groups. We
name the modified SMALL as SMALL-SINR.

To evaluate the performance of both SPA and SMALL-
SINR, we uniformly distributed transmitters and receivers in
a 1000m × 1000m square region. The length of each link
is randomly chosen between 100m and 200m. The SINR
threshold was set to 10, the environment noise N0 = 10−9,
the path loss exponent α = 2, and transmit power P0 = P1 =
· · · = Pn = 0.2W . We assume that the bids from all buyers
are distributed uniformly at random over (0, 100], and each
buyer requests at most 3 channels. All results are averaged
over 100 times for each parameter configuration.

B. Performance Metrics

We evaluate the performance of SPA using the following
metrics.
• Revenue: The total payment from all the winning buyers.

• Channel Utilization: Average number of buyers allocated
to each channel.

• Buyer Satisfaction Ratio: The percentage of buyers who
win at least one channel.

C. Evaluation Results and Analysis

Figure 3 shows revenues, channel utilizations and buyer sat-
isfaction ratios of both SPA and SMALL-SINR. The number
of buyers is 100 and the number of auctioned channels varies
from 5 to 85 with an increment of 5.

Figure 3(a) gives the trends of channel utilization for
both SPA and SMALL-SINR. In SMALL-SINR, the average
number of buyers in each channel stays at a steady level
around 1.2. In SPA, the channel utilization is around 3 initially,
and gradually falls to a level about 2.2. With more channels
released, the competition among buyers in SPA becomes less
intense, while SMALL always sacrifices one buyer in each
group to maintain truthfulness.

In Figure 3(b), the satisfaction ratio of SMALL-SINR grows
at first, then stays at a steady level. Because in SMALL-
SINR, groups are formed before the allocation. When the
number of channels increases to a certain value, the number
of winning groups remains the same. In SPA, the satisfaction
ratio increases with the number of channels, and is above 98%
when there are enough channels for almost all buyers.

Form Figure 3(c) it can be observed that the revenue of
SMALL-SINR grows with more channels involved, but the
revenue converges after the saturation of the market. On
the other hand, the revenue of SPA increases rapidly at the
beginning and then falls down when the number of auctioned
channels is above 40. The fundamental reason is that, with
more channels, the competition among buyers is no longer
intense, which leads to zero payments for some winners.

Figure 4 shows the impact of the number of SUs on
revenues, channel utilizations and buyer satisfaction ratios
for both SPA and SMALL-SINR. The number of auctioned
channels is 50 and the number of SUs varies from 20 to 500.

Figure 4(a) illustrates the channel utilization when more
buyers join the auctions. Based on the interference relation-
ship, 2-3 buyers can share the same channel but SMALL-
SINR always sacrifices one buyer in each group to maintain
truthfulness. On the other hand, the group size is guaranteed
to be no less than 1 due to the winner section rule. Therefore,
channel utilization stays steady around 1.2 in SMALL-SINR.
Whereas, in SPA the average number of buyers in each channel
increases rapidly at first, and then remains at a level around
2.5 due to over-saturation of the market with more SUs.

From Figure 4(b), it can be observed that, initially the
satisfaction ratio is nearly 100% in SPA. Because most buyers
are winners and the market is almost saturated. When more
buyers join the auction, SPA does not provide sufficient
channels to satisfy all the buyers. As a result, the satisfaction
ratio drops. On the contrary, SMALL-SINR can hardly achieve
high satisfaction ratio due to its sacrifice rule.

In Figure 4(c), the competition between buyers in SPA be-
comes more intense with more buyers involved. Consequently,
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Figure 3. Comparing SPA and SMALL-SINR by auctioning 5-85 channels to 100 bidders.
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Figure 4. Comparing SPA and SMALL-SINR by auctioning 50 channels to 20-500 buyers.

winners’ critical values are higher and the revenue increases.
Similarly, when the competition between groups in SMALL-
SINR grows, the seller receives more revenue. However, the
sacrifice rule in SMALL-SINR inhibits significant revenue
growth, compared with that in SPA.

VI. CONCLUSION

In this paper, we proposed SPA, a spectrum auction that
allows the primary and secondary users to share channels
simultaneously under the physical interference model. We an-
alyzed SPA and proved that it satisfies truthfulness, individual
rationality, and computational efficiency. Further performance
evaluation indicates SPA achieves better channel utilization
and buyer satisfaction ratio compared with SMALL [15]
adapted for the physical interference model.
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